p=4/3*3.14*(83)^3

Simple and best practice solution for p=4/3*3.14*(83)^3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for p=4/3*3.14*(83)^3 equation:



p=4/3*3.14(83)^3
We move all terms to the left:
p-(4/3*3.14(83)^3)=0
We get rid of parentheses
p-4/3*3.1483^3=0
We multiply all the terms by the denominator
p*3*3.1483^3-4=0
Wy multiply elements
9p^2*3-4=0
Wy multiply elements
27p^2-4=0
a = 27; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·27·(-4)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*27}=\frac{0-12\sqrt{3}}{54} =-\frac{12\sqrt{3}}{54} =-\frac{2\sqrt{3}}{9} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*27}=\frac{0+12\sqrt{3}}{54} =\frac{12\sqrt{3}}{54} =\frac{2\sqrt{3}}{9} $

See similar equations:

| W(2w+1)=0 | | 10x-9=35x+11 | | 1.87x=0.7 | | 3.1+10m=6.56 | | 4p=-19.6 | | (h-8)²=0 | | (x+6)=(3x-4) | | y/25=-28 | | 18^5x=7^x-4 | | -28q=448 | | x-4/3=22 | | 13⋅m⋅0= 13⋅0⋅m | | -7(x-2)+3=7 | | d/5−3=3 | | -15.96=u+2.44 | | 50=2w+w | | v=4/3*3.14*(83)^3 | | x+972=603 | | 365+x=-397 | | -109-x=2(31-5x) | | x+-540=-1114 | | b/3=2.43 | | 447-x=332 | | f-2.9=9.1 | | -55-x=-50 | | 24/x+16=52 | | x-56=-138 | | h-556=47 | | (g+12)+(g-7)-(2-3G)=0 | | w+585=209 | | w=585=209 | | 3x-157=-6x+113 |

Equations solver categories